Stream Restoration Design Challenges and Status

Dr. Craig Fischenich
USAE Waterways Experiment Station

What is Restoration?

Restoration Approaches

- Undisturbed Self-Recovery
- Assisted Recovery
- Full Restoration

Pajaro River, CA

- Natural Recovery
- Reference Based
- Sediment/Riparian Focus
- 5 7 Year Recovery
- < \$20,000 / Mile

Longs Canyon Creek, CO

- Natural Recovery
- Reference Based
- Riparian Focus
- 5 7 Year Effort
- < \$100,000 / Mile

Rapid Creek, SD

- Repair/Reconstruct
- Analytical
- Fisheries & Flood Control
- Aquatic Focus
- Immediate Response
- ~ \$500,000 / Mile

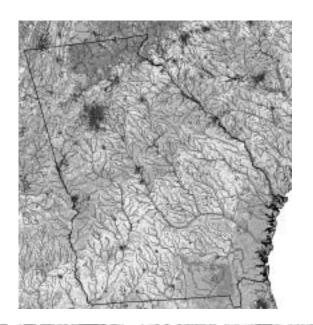


Habitat Enhancement

Natural Channel Design

- Emphasizes geometry, plan, profile that will be stable under given flow/sediment regime with minimal armor/maintenance.
- Assumes most functions follow from geomorphic condition.

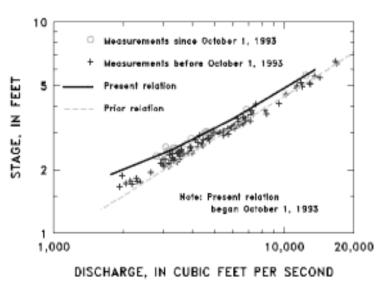
New-Age Channelization?

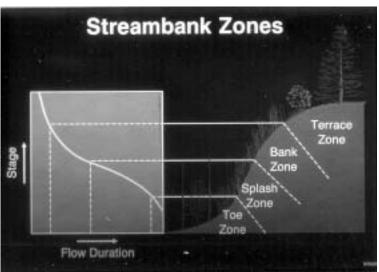

New Paradigm?

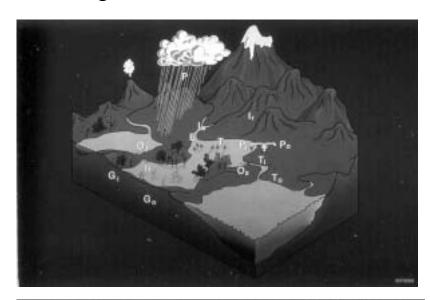
Stream & Riparian Functions

System Dynamics	Hydrologic Balance	Sediment Processes & Character	Biological Support	Chemical Process & Pathways
Stream Evolution Processes.	Surface Water Storage Processes.	Full Sedimentation Processes.	Biological Communities and Processes.	Water and Soil Quality Processes.
Energy Processes.	Surface - Subsurface Exchange Processes.	Substrate and Structural Processes.	Necessary Habitats for all Life Cycles.	Chemical Processes and Nutrient Cycles.
Riparian Succession.	Hydrodynamic Character.	Quality and Quantity of Sediments.	Trophic Structures and Pathways.	Landscape Pathways and Processes.

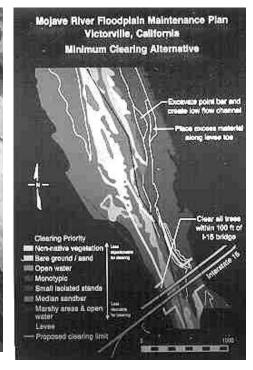
Big Creek, GA



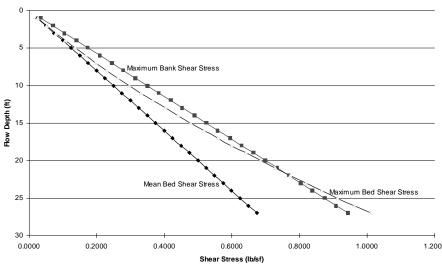


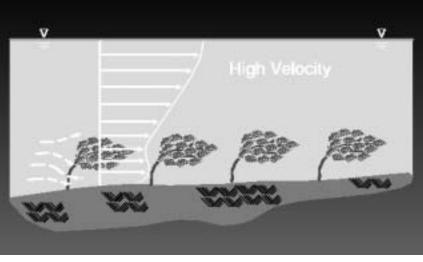

- Multiple Management Options
- Analytical/Reference
- Multi-Year Effort
- ~ \$1,000,000 / Mile

Hydrology & Hydraulics


Mojave River, CA

- Riparian Management
- Analytical Basis
- Flood Control Vs Habitat





Stability Analyses

Bitterroot & Clark Fork Rivers, MT Sacramento & American Rivers, CA

Riprap vs Rootwads

Wildcat Creek, CA

Wildcat Creek, CA (cont'd)

- Reconstruct
- Reference Vs Analytical
- Highly Impacted
- May Never Recover
- > \$2,000,000 / Mile

"Just because a man is an Engineer, it does not mean he knows much about engineering.

It merely means he knows much less about everything else."

- Mark Twain

